

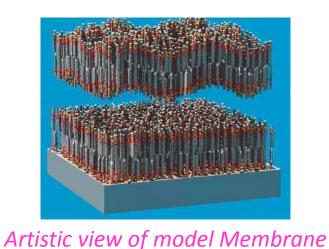
WP 20 « Advanced Neutron Tools for Soft and Bio Materials »

Six partners:

LLB (CEA) HZB JCNS ILL FRMII (TUM) STFC (ISIS)

Two topics:

- Platform for model biological membranes			
- Specific sample environments for soft materials			
- Kinetic & Dynamics experiments	Task 2		
 Humidity chamber with sample changer 	Task 3		
 Cryogen free cryostat with sample changer 	Task 4		



(Task 1) 91 MM Platform for model biological membranes

ILL (task leader)- STFC, CEA (partners) – HZB, TUM, JÜLICH (observers)

Develop methods to study biological membranes with neutron reflectometry

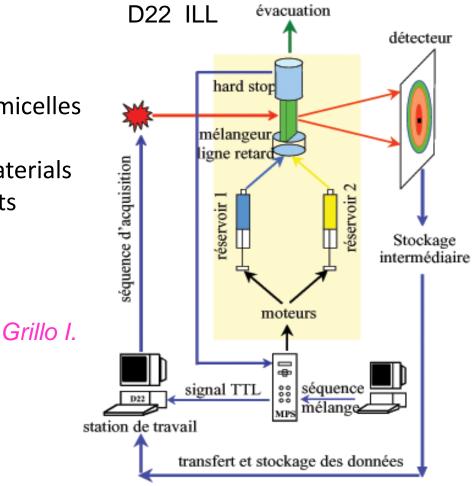
✓ Preparation of model membrane (floating bilayer membrane) for further studies of interactions with numerous biomolecules

- ✓ Development of reliable protocols for reconstitution of membrane proteins into model membranes.
- Improvment of data analysis methods of reflectivity data

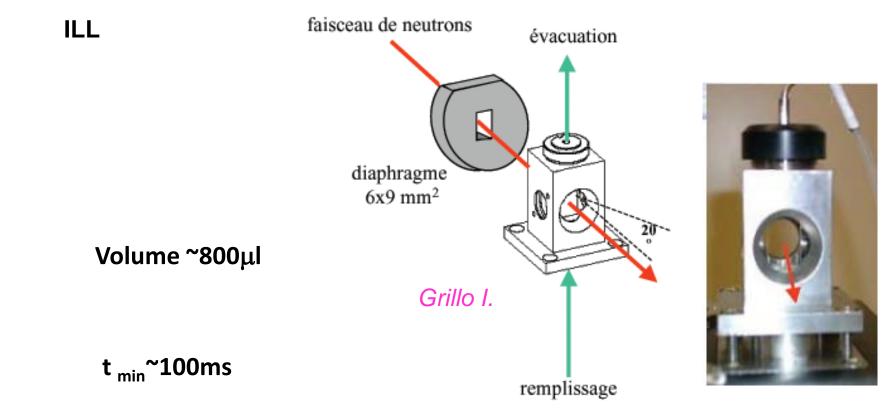
cuyer, Fragneto et al. 2006 ✓ Molecular dynamics simulations -> structure / neutron data ✓ deuteration of lipid compounds (D_Lab)

(Task 2) 43MM Kinetics, dynamics and in-situ devices

JULICH (task leader)- ILL, CEA (partners) - STFC, HZB, TUM, Tübingen Univ. (Germany) (observers).


- Develop kinetic & dynamics experiments (in situ).
 - Stopped-flow
 - Pressure cells
 - Electric field cells
 - Complementary spectroscopies : light scattering...

Kinetics of different phenomena after application of external stimuli (dilution, mixture 1 2 or 3 components, pH or T-jump...)


Formation of vesicles from micelles Effect of salt on vesicles.. Growing of mesoporous materials from glycosyléic surfactants

Stopped Flow

- \checkmark Decrease the dead times (mixing time and filling up and emptying)
- cnrs
- í Improve T control
- ✓ Different SF cells adapted to the available sample volumes
 - microcell
 - larger cells to decrease the repetition rate to obtain a good statistics

Pressure cell with sapphire windows and temperature control

- ✓ P up to 7kbars for SANS
- Study unfolding of proteins
- ✓ Pressure cell for NSE : larger samples $35*35 \text{ mm}^2$
 - non magnetic elements to apply pressure

Electric field cell

Studies of charged colloids , polyelectrolytes or other biomolecules

- $\checkmark\,$ EF cell for SANS with T° control
- ✓ Design EF cell for TOF spectrometer (with larger samples, annular geometry)

Static LS /SANS

Complement the standard SANS Q-range to smaller Q range

 $2x10^{-4} \text{ Å}^{-1} \le Q \le 3x10^{-3} \text{ Å}^{-1}$

Accurate monitoring of aggregation phenomena, approach to a phase separation. \checkmark DLS for several scattering angles (measure S(Q,t) in the μ s- to ms range)

HZB (task leader)- ILL, JÜLICH (partners) - STFC, TUM, CEA, McMaster Univ. (Canada) (observers)

Control the hydration level of soft materials samples . Temperature control

Investigations - of the proton motion in Nafion membrane – of the dynamics of phospholipid membranes – of the structure and dynamics of clays,- for studies of the function/structure relationship of hydrated proteins.

 \checkmark obtain faster and better controlled response in wider temperature and humidity ranges.

- \checkmark different geometries for SANS, reflectometry, and NSE.
- \checkmark Multi-position sample holder for SANS

(Task 4) 37MM Cryogen free cryostat with sample changer

ILL (task leader) - STFC, TUM (partners) – HZB, JÜLICH, CEA (observers). ANSTO (Australia), ORNL (USA), JAEA (Japan)

Decrease dead times related to temperature and sample changes in cryostat

 ✓ Design a cryostat with a carousel of samples either placed at room temperature or thermalized at low temperature (for example at 80K by using a cold gas stream),
 ✓ Compact design with less cold mass (rapid cool-down) and sample changes by means of a robot.

- ✓ Different tails for different geometries (SANS, reflectometry in different facilities.
- ✓ Tail windows designed in order to apply in-situ light/UV or other external radiation.

		Total
Platform Biomembrane	Task 1	91
Kinetics/ Dynamics	Task 2	43
Humidity Chamber	Task 3	31
Cryostat MultiSamples	Task 4	37
	Total	204

	LLB	HZB	JCNS	ILL	FRMII	STFC	Total
	20	18	13	68	18	14	
Total	28	25.2	18	91	22.4	19.6	204

