

Wir schaffen Wissen – heute für morgen

Access to SINQ and S μ S

NMI3-II Kick-off meeting

Stefan Janssen Paul Scherrer Institut – User Office

March 13, 2012

15. März 2012

Content:

- User lab PSI
- SINQ status and news
- SµS status and news

		SINQ	PSI BR	
2011	SLS	SINQ	SμS	PSI total
Beamlines	16	12	6	34
Instrument Days	1787	1939	669	4395
Experiments	1058	439	226	1723
User Visits	3338	826	319	4483
Individual Users	1565	441	160	2096
New Proposals	778	403	196	1377

Swiss and International User Visits SLS-SINQ-S μS

PAUL SCHERRER INSTITUT

Indicators

Development User Facilities Indicators (SLS, SINQ, SμS) (publication data as of Feb 14, 2012)

New proposals	:	403 (355)
Visits	:	826 (945)
Individual users	:	441 (465)
Experiments	:	439 (483)
Experimental days	:	1939 (1954)

submission of new proposals SINQ

submission of new proposals SINQ

New proposals	:	196 (201)
Visits	:	319 (392)
Individual users	:	160 (171)
Experiments	:	226 (187)
Experimental days	:	669 (714)

submission of new proposals $\ensuremath{\mathsf{S}\mu\mathsf{S}}$

SINQ users 2011

SINQ	funded projects	funded users	delivered days
2004	41	50	236
2005	78	ca 80	402
2006	22	23	112
2007-08	47	50	273
2009-10	73	74	434
2010-11	63	65	277

SμS	funded projects	funded users	delivered days
2004	18	20	88
2005	28	33	176
2006	24	24	114
2007-08	28	28	144
2009-10	35	35	184
2010-11	20	21	89
Total	477	ca 500	2529

PSI proton accelerator

- 590 MeV cyclotron
- 50 MHz (continuous source)
- 2.2 mA, successful tests up to 2.4 mA
- 1.3 MW
- production of thermal neutron flux: approx 1.5x10¹⁴ n/cm²/s

Availability in %

Performance accelerator

User Office

Neutron Scattering and Imaging Instruments at SINQ

Further Information: http://sinq.web.psi.ch/sinq/instruments.html

Full suite of modern instrumentation (cold and thermal neutrons):

- 2 SANS facilities (SANS-I, SANS-II)
- 1 reflectometer (AMOR)
- 2 powder diffractometers (HRPT, DMC)
- 1 X-tal diffractometer (TRICS)
- 1 strain scanner (POLDI)

.

- 1 time-of-flight spectrometer (FOCUS)
- 2 triple-axis spectrometers (RITA-II, TASP)
- 1 backscattering spectrometer (MARS)
- 2 imaging/radiography beamlines (NEUTRA, ICON)
- various test/adjustment facilities (MORPHEUS, BOA, ORION, NARZISS)

EIGER – The new thermal TAS at SINQ

User Office

Instrument:

primary spectrometer with virtual source and double focusing monochromator

conventional secondary spectrometer with focusing analyzer and single ³He- detector

magnetic field at sample up to 15T (non-magnetic components)

Instrument responsibles: Uwe Stuhr Bertrand Roessli

EIGER – The new thermal TAS at SINO

First Tests (Nov 2011) – Monochromator Focusing

Focusing properties of the monochromator

Pictures taken with a neutron camera at sample position

Top: horizontal and double focusing at λ =2.32Å Right: double focusing at λ =1.2 Å

EIGER – The new thermal TAS at SINQ

First Tests (Nov 2011) – First Spectrum

Energy resolution scan of EIGER at 14.2 meV (Vanadium sample Ø 1cm)

Current Status:

- EIGER construction is completed !
- successful first tests in Nov 2011
- good performance of the double focusing monochromator
- good energy resolution
- intensity as expected
- some improvements of the background necessary
- user service from 2013

First experiments on EIGER after the shut down!

PAUL SCHERRER INSTITUT

TESI: Transmission/Tamaki Energy Selective Imaging

TESI working principle:

Neutrons of unwanted energies are scattered out of the direct beam by Bragg reflection at pyrolithic graphite single crystals

First crystal pair, ∆λ≈0.1Å

First crystal pair, Δλ≈0.1Å Final spectrum Δλ/λ≈5%

Good agreement between simulation and time-of-flight spectral measurement !

User Office

Devices in user operation:

- 11 closed cycle fridges
- 9 orange cryostats
- 3 dilution inserts
- 3 furnaces
- 7 cryo-magnets
- 2 electro-magnets
- 6 pressure cells

Operated by dedicated sample env group

Parameter range:

- 100 mK < T < 1800 K
- P < 100 kbar (Paris Edinburgh cell)
- B < 15 T (vert), B< 7 T (hor)
- SANS: B < 17 T !!

New 17T Magnet tested for Small Angle Neutron Scattering

- Superconducting solenoid (University of Birmingham, Cryogenic Ltd, EPSRC UK)
- 17 T maximum field, 10 deg opening angle
- July and Aug 2011: first experiments at SINQ (SANS-I)
- Used for hard and soft matter (HTC, fd virus)
- It will be available for future user experiments at SINQ

q_x (A⁻¹)

Flux lattice in a twinned YBCO7 crystal locking into a square VL at fields above 11 T (previous max field at SINQ). In an untwinned crystal (not shown) the VL moves through the square shape as a function of field.

The Swiss muon source SµS

User Office

ALC Avoided Level Crossing µSR Instrument Muon energy: 4.2 MeV (µ⁺) Temperatures: 4.2 - 600 K Magnetic Fields: 0 - 5 T

> Surface Muon Instrument Muon energy: 4.2 MeV (µ⁺)

Temperatures: 1.8 - 900 K

Magnetic Fields: 0 - 0.6 T

Contact: A. Amato

alex.amato@psi.ch

Muons on Request (MORE)

Contact: A. Stoykov alexey.stoykov@psi.ch

> GPS General Purpose

Shared Beam Surface Muon Facility

LTF

Low Temperature Facility Muon energy: 4.2 MeV (µ⁺) Temperatures: 10 mK - 4.2 K Magnetic fields: 0 - 3 T Muons on Request (MORE)

> Contact: C. Baines chris.baines@psi.ch

Low Energy Muon Beam and Instrument Tunable muon energy: 0.5 - 30 keV (µ*) Temperatures: 2.5 - 700 K Magnetic fields: 0 - 0.1 T perpendicular, 0 - 0.03 T parallel to sample surface

Contact: T. Prokscha Thomas.prokscha@psi.ch

DOLLY General Purpose Surface Muon Instrument Muon energy: 4.2 MeV (µ*) Temperatures: 1.8 - 900 K

Contact: R. Scheuermann robert.scheuermann@psi.ch

GPD General Purpose Decay Channel Instrument Muon energy: 5 - 60 MeV (u⁺ or u⁻) Temperatures: 2 - 500 K Magnetic Fields: 0 - 0.5 T

Contact: R. Khasanov Rustem.khasanov@psi.ch

Overview SµS instruments

name	purpose	muon energy	T-range	B-field	contact
GPS	General purpose surface muon instrument	4.2 MeV	1.8-1200 K	0-0.6 T	A. Amato
GPD	General purpose decay channel instrument	5-60 MeV	0.3-500 K	0-0.5 T	R. Khasanov
LEM	Low energy muon instrument	0.5-30 keV	2.5-400 K	0-0.3 T	T. Prokscha
ALC	Avoided level crossing instrument	4.2 MeV	4.2-500 K	0-5 T	K. Sedlak
LTF	Low temperature facility	4.2 MeV	10 mK - 4.2 K	0-3 T	C. Baines
DOLLY	General purpose surface muon instrument	4.2 MeV	0.3-300 К	0-0.5 T	R. Scheuermann

Unique: Low energy muon instrument - LEM

User Office

AUL SCHERRER INSTITUT

- allows for the implantation of muons at small and controllable depths
- implantation depth: a few nm several 100 nm

 $LaMO_3$ (M=Ni, Al)

N = 2 u.c.

Α

GPS:

- Design of new APDs-based detectors (→ 2013) with Right/Left detectors
- Replacement of old WED & WEP coils (commissioning; installation: next shutdown)
- Replacement of some magnets power supplies (Septum, Spin Rotator, Steering Magnets)
- Remote control of vacuum components

GPD:

- New collimator I (beginning of beamtime?)
- Automatic He-flow control for Variox cryostat
- EPICS control of the beamline power supplies

User Office

DOLLY:

Dolly shares a beam area with particle physics experiments.

Big manpower investment to build/rebuild instrument with beam line.

Beam area redesign allows permanent installation of Dolly (under study)

New instrument: High Field µSR 9.5 T, ~20mK

User Office

9.5 T with recondensing system (10 ppm field homogeneity)

No change in performance up to 9.5 Tesla !

First Data at 9.5T on Ag sample (2011)

PAUL SCHERRER INSTITUT

User Office

- Access to SINQ (262 days)
- Access to SµS (123 days)
- JRA neutron imaging
- JRA muons
- Networking activity: integrated user access

Thanks for your attention ... !!

User Office

Multiple Pulse Overlap TOF Diffractometer

- neutron flux at sample position 6 x 10⁶ n cm⁻² s⁻¹
- resolution (ΔQ/Q) between 1 x 10⁻³ and 2 x 10⁻³
- maximum neutron beam size 2.5mm
 x 30mm
- Minimum gauge volume: 0.6mm x
 0.6 30mm

- New disk chopper magnetic bearings 21.000 rpm
- new biaxial tensile-compression-torsion machine for in-situ testing, combined with 1200 C furnace