

JRA Detectors Gaseous Scintillation Proportional Counters CNR, FZJ, ILL, LIPC, STFC, TUM

JRA presentation General Assembly Villigen, CH 2009, March 31

Objectives

- Development of new detector technologies based on Gaseous Scintillation Proportional Counters (GSPC)
- Explore their potential to overcome the limitations in light output and rate capability of existing scintillation detectors
- Build and study small scalable prototypes
- Investigate their potential as high resolution detectors e.g.used for reflectometry or time resolved SANS.

Structure and participants

Task	Title	Task leader
T22.1	JRA management	K. Zeitelhack, TUM
T22.2	Gaseous Scintillation Proportional Counter (GSPC)	B. Guerard, ILL
T22.3	Light detecting devices, Front end, processing & readout electronics	N. J. Rhodes, STFC

Partner	Acronym	Institute	Task
P1	ILL	Institute Laue-Langevin	T22.2
P2	LIPC	LIP Coimbra	T22.2
P3	STFC	Science and Technology Facilities Council	T22.2 T22.3
P4	FZJ	Forschungszentrum Jülich	T22.3
P5	CNR	Consiglio Nazionale delle Ricerche	T22.3
P6	TUM	Technische Universität München (FRM II)	T22.1,T22.3
01	ToU	University of Tokyo	T22.2, T22.3

Gaseous Scintillation Proportional Counters (GSPC)

Production of light during ionization ("primary") and charge amplification ("secondary") in a Gaseous Proportional Counter

Intensity and spectral response depend on gas, pressure, charge amplifying structure

Micro pattern charge amplifying structure (e.g. MSGC)

PMT signals of primary and secondary light produced in a MSGC at ILL

Neutron Detection with a GSPC

 $n + {}^{3}\text{He} \rightarrow t + p + 765 \text{ keV}$

High-p gas filling: ³He+CF₄

Spectral response

Pilot study of MSGC based GSPCs within "MILAND"

A light output of $10^6 - 10^7$ photons / neutron seems possible. This should allow sub-mm position resolution

MSGC (ILL6C) based GSPC built at LIPC / ILL

View inside

GSPC with Anger Camera readout mounted for a test at ILL beam station CT1

He+CF4 (bar)	2+3
Absorption gap (mm)	5
MSGC-PMT gap (mm)	27.5
Anode width (µm)	8
Anode pitch (mm)	1
2 x 2 PMT array; PMT Ø (mm)	38

Villigen, 2009 March 31

CNR-FZJ-ILL-LIPC-STFC-TUM

Light signals of GSPC prototype

Typical PMT signals

Light signal length [sec]

High amplitude → good discrimination
Fast signals: rise time ~20ns, duration ~60ns
→ Should allow high count rate capability

F. Fraga, LIPC, E. Schooneveld, STFC

Position resolution of GSPC prototype

- Investigate micro pattern charge amplifying structures for GSPCs study achievable gain in high-p operation, light output, time constants,...
- Study the GSPC performance, photon yield and spectral response as a function of gas composition, purity, pressure,...
- Investigate the application of optical elements like dispersers, lenses or collectors to enhance the photon yield of the light readout devices
- A He+CF₄ based GSPC requires high pressure operation (detection efficiency, light yield). Need for a modular pressure vessel design with minimum dead space
- Simulate GSPC performance taking into account photon yield, optical and geometrical parameters, light detecting readout to optimize the GSPC design.
- Design and produce a small scalable demonstrator

Investigate micro pattern charge amplifying structures for GSPCs study achievable gain in high-p operation, light output, time constants,...

Standard MSGC only allow back illumination mode. Optical window and conversion gap limit MSGC – PMT distance.

Perspective: transparent multigrid MSGC produced by Tokyo University

ITO- MSGC can act as window 90% electrode transparency PMT close to light production Multigrid design provides high local count rate capability Large active area feasible

Alternative micro pattern devices

GEM (Gaseous electron multiplier) manufactured at CERN

Drawback: seems to allow less gain at high CF4 pressure

50 µm Kapton cladded with

5 µm Copper on both sides

F.Sauli. NIMA386(1997)351

Villigen, 2009 March 31

CNR-FZJ-ILL-LIPC-STFC-TUM

- Investigate micro pattern charge amplifying structures for GSPCs study achievable gain in high-p operation, light output, time constants,...
- Study the GSPC performance, photon yield and spectral response as a function of gas composition, purity, pressure,...
- Investigate the application of optical elements like dispersers, lenses or collectors to enhance the photon yield of the light readout devices
- A He+CF₄ based GSPC requires high pressure operation (detection efficiency, light yield). Need for a modular pressure vessel design with minimum dead space
- Simulate GSPC performance taking into account photon yield, optical and geometrical parameters, light detecting readout to optimize the GSPC design.
- Design and produce a small scalable demonstrator

Scintillation spectra

L. Margato, LIPC

- Investigate micro pattern charge amplifying structures for GSPCs study achievable gain in high-p operation, light output, time constants,...
- Study the GSPC performance, photon yield and spectral response as a function of gas composition, purity, pressure,...
- Investigate the application of optical elements like dispersers, lenses or collectors to enhance the photon yield of the light readout devices
- A He+CF₄ based GSPC requires high pressure operation (detection efficiency, light yield). Need for a modular pressure vessel design with minimum dead space
- Simulate GSPC performance taking into account photon yield, optical and geometrical parameters, light detecting readout to optimize the GSPC design.
- Design and produce a small scalable demonstrator

- Investigate micro pattern charge amplifying structures for GSPCs study achievable gain in high-p operation, light output, time constants,...
- Study the GSPC performance, photon yield and spectral response as a function of gas composition, purity, pressure,...
- Investigate the application of optical elements like dispersers, lenses or collectors to enhance the photon yield of the light readout devices
- A He+CF₄ based GSPC requires high pressure operation (detection efficiency, light yield). Need for a modular pressure vessel design with minimum dead space
- Simulate GSPC performance taking into account photon yield, optical and geometrical parameters, light detecting readout to optimize the GSPC design.
- Design and produce a small scalable demonstrator

- Investigate micro pattern charge amplifying structures for GSPCs study achievable gain in high-p operation, light output, time constants,...
- Study the GSPC performance, photon yield and spectral response as a function of gas composition, purity, pressure,...
- Investigate the application of optical elements like dispersers, lenses or collectors to enhance the photon yield of the light readout devices
- A He+CF₄ based GSPC requires high pressure operation (detection efficiency, light yield). Need for a modular pressure vessel design with minimum dead space
- Simulate GSPC performance taking into account photon yield, optical and geometrical parameters, light detecting readout to optimize the GSPC design.
 - Design and produce a small scalable demonstrator

- Investigate micro pattern charge amplifying structures for GSPCs study achievable gain in high-p operation, light output, time constants,...
- Study the GSPC performance, photon yield and spectral response as a function of gas composition, purity, pressure,...
- Investigate the application of optical elements like dispersers, lenses or collectors to enhance the photon yield of the light readout devices
- A He+CF₄ based GSPC requires high pressure operation (detection efficiency, light yield). Need for a modular pressure vessel design with minimum dead space
- Simulate GSPC performance taking into account photon yield, optical and geometrical parameters, light detecting readout to optimize the GSPC design.
- Design and produce a small scalable demonstrator

Explore various photomultiplier (PMT) devices for use in a GSPC

- Investigate innovative light detecting devices (APDs, Si-PMTs)
- Analyze electronics response of small prototypes recorded with digitizing systems
- Based on this analysis develop a compact modular high performance front end electronics
- Develop dedicated signal processing hardware to carry out neutron identification and position determination in real time

- Single cathode PMTs
 Anger Camera Readout
 Array of single cathode PMTs
 High gain up to 10⁶-10⁷
 Peak efficiency ~ 25-30%
 Fast signals 1~5 ns
 Background <10 c/s
 few readout channels required
 - Quartz, blue or red PMTs ?
 - PMT size, pitch, arrangement

hexagonal

quadratic

Spectral response

Villigen, 2009 March 31

Position Sensitive PMTs (PS-PMT)

- Single Photocathode
- Multi anode wires crossing one another in X and Y direction
- Anodes connected to resistor chain
- Only four readout channels required
- Needs calibration for gain uniformity
- Position resolution proportional to light yield
- Square shape

Hamamatsu R3292-02 5" PS-PMT 28 wires in X, Y

Multi Anode PMTs (MA-PMT)

True pixel layout 16, 64 or 256 pixel / PMT Pixel size 2.8 – 5.8 mm Gain can vary by a factor of 3, needs calibration High number of readout channels Small pixel size could offer higher position resolution

Hamamatsu 8500 64 pixel PMT 6mm x 6mm pixel

- Explore various photomultiplier (PMT) devices for use in a GSPC
- Investigate innovative light detecting devices (APDs, Si-PMTs)
- Analyze electronics response of small prototypes recorded with digitizing systems
- Based on this analysis develop a compact modular high performance front end electronics
- Develop dedicated signal processing hardware to carry out neutron identification and position determination in real time

Photon counting APD-array

Gain vs. reverse voltage

REVERSE VOLTAGE (V)

Quantum efficiency vs. wavelength

Hamamatsu S8550

Still expensive

 Impressive recent results obtained in PET detectors

- Explore various photomultiplier (PMT) devices for use in a GSPC
- Investigate innovative light detecting devices (APDs, Si-PMTs).
- Analyze electronics response of small prototypes recorded with digitizing systems
- Based on this analysis develop a compact modular high performance front end electronics
- Develop dedicated signal processing hardware to carry out neutron identification and position determination in real time

- Explore various photomultiplier (PMT) devices for use in a GSPC
- Investigate innovative light detecting devices (APDs, Si-PMTs).
- Analyze electronics response of small prototypes recorded with digitizing systems
- Based on this analysis develop a compact modular high performance front end electronics
- Develop dedicated signal processing hardware to carry out neutron identification and position determination in real time

- Explore various photomultiplier (PMT) devices for use in a GSPC
- Investigate innovative light detecting devices (APDs, Si-PMTs).
- Analyze electronics response of small prototypes recorded with digitizing systems
- Based on this analysis develop a compact modular high performance front end electronics
- Develop dedicated signal processing hardware to carry out neutron identification and position determination in real time

Outlook to the future

- JRA is a really joint effort of the contributing labs to evaluate a new technology for neutron detectors
- Building small demonstrators the goal is to step ahead towards a neutron detector technology with the perspective of high position resolution ∆x ~0.5 1mm high count rate capability 1-10 MHz low gamma sensitivity