

News from Garching Alexander loffe

FRM II back to work!

- Long maintenance break 373 days, restart 2.10. 2011
- Exchange of the positron source
- New thimble for ⁹⁹Mo radioisotop production

Proposal Round 14

ANTARES

✓ Moved from beam tube SR4b to SR4a (free the beam port for MEPHISTO/PERC)

- ✓Complete rebuild of the instrument (exchange of >500t of shielding)
- $\checkmark 2$ measuring positions, improved resolution and shielding
- ✓New options: polarised neutrons, monochromatic neutrons

✓ Restart second half of 2012

TOFTOF

Adaptive Optics Focusing neutron guide

Small samples (5-10 mm diameter)Lower background from sample environment

Increasing of detectors

from 605 to 1006 detectors
active area enhanced from 7.26 m² up to 12 m²

New electrical grounding concept

improving the signal-to-noise ratioreducing external disturbance

FUTURE PERSPECTIVES

Magnetic field for low temperatures ~3.5T)
Inelastic neutron scattering under high pressure (6-7 kbar)

N-REX reflectometer

Upgrades

- New focusing monochromator (gain factor = 3)
- X-ray setup (see photo)
- New polarizer/analyzer (*Efficiency* = 99%)

Further developments

- Further increase of signal/noise ratio (focusing guide, improved background)
- Wide-angle polarization analyzer
- Advanced cells for solid/liquid interfaces

MIRA

New option: 3-axis

- constant k_i
- cold neutrons: 4 6 Å

New PSD CASCADE detector:

- 20x20 cm² with 128x128 Pixel
- Single event counting with a large dynamic range up to 10⁸ n/s

New S-bender polariser

P=98.5% on 60x80 mm²

New instrument control software (NICOS)

STRESS-SPEC

Instrumental development (texture)

TU Clausthal

ROBOT

✓ now standard for bulk
 material texture analysis

✓ great improvement in the effecient use of beam time

Robot as sample positioner for bulky samples (texture analysis)

Robot and sample changer with 12 positions

PGAA

Upgrades

- Highest flux: 4x10¹⁰ cm⁻² s⁻¹ at (2x2)mm² Earlier background: ~7000cps New background: ~400 cps
- Working flux: 2x10⁹ cm⁻² s⁻¹ at (10x10mm² Earlier background: ~200 cps New background: ~11 cps

Best in the world signal/background ratio for PGAA instruments.

KWS-2 – Wide Q-Range/High Intensity SANS -Diffractometer

• Was initially built in a short 8m version, now finally in the full 20m version

• Maximal flux: 2.10⁸ n/cm²/s (similar to D11&D22)

Status: user operation in full version

KWS3 – Very High Resolution Focusing SANS Diffractometer

Boosted flux (20x more than in Jülich) :

 $Q_{min} = 4.10^{-5} \text{\AA}^{-1} - 1000 \text{ n/s}; \quad Q_{min} = 1.10^{-4} \text{\AA}^{-1} - 11000 \text{ n/s}; \quad Q_{min} = 2.5 \cdot 10^{-4} \text{\AA}^{-1} - 70000 \text{ n/s};$

(another 3x after the repair of the neutron guide)

Status: user operation

MARIA – Magnetic Reflectometer

Hexapod with a sample and on-beam ³He-SEOP analyser (constant ³He polarization) <u>Vertical reflectometer</u> <u>for specular, off-specular and</u> <u>GISANS measurements:</u>

- Typical sample size 10 x 10mm²
- Thin layers down to sub mono layers
- Full polarisation analysis as standard
- (Ø32cm detector coverage, analyzed neutron polarization 90%)
- Lateral structures from nm to µm range

Fully polarised GISANS measurements of Fe_2O_3 nanoparticles at T=10K and B=0.75T

Status: in user operation

BioDiff – Diffractometer for Crystals with Large Unit Cells

Monochromator	PG002, mosaicity: 0.4 – 0.5° wavelength range with selector: 2.4 - 5.6 Å wavelength range without selector: 2.4 - 6.1 Å
Higher order filter	velocity selector, transmission: 87% for 2.4 Å
Collimation	adjustable slits down to 1 mm
Wavelength resolution for 2.4 Å	$\Delta\lambda/\lambda = 2.9\%$
Divergence (no slits) for 2.4 Å	horizontal: 0.8° FWHM vertical: 0.7° FWHM
Main detector	neutron image plate (cylindrical), radius=20 cm; angular range: $\pm 152^{\circ}$ horizontal; $\pm 48^{\circ}$ vertical pixel size: 125, 250, 500 μ m ²
Auxiliary detector	CCD camera with scintillator: 200 x 200 mm distance to sample: 100mm CCD: 2048 x 2048 pixel; pixel size: 13.5 µm ² spatial resolution: 300 µm ²
Sample environment	Oxford Cryosystems Cryostream 700 plus: 90 – 500 K (will be available soon)

Status: starting user operation...

BioDiff – first test with both detectors

Image-plate-detector active:

neutrons

Scientific Computing Group

- a joint group of JCNS and TUM
 - created in 2011
 - staff of 4 since January 2012
 - one more JCNS position open
 - TUM positions will follow

- serving all scattering instruments at FRM II
 - development of data analysis software
 - definition of data formats
- scientific collaboration on prototypical experiments
- first project defined by German High-Data-Rate Initiative (HDRI)
 - collaboration with DESY, HZG, HZB
 - analysis software for SANS/SAXS
 - physical modelling for GISANS/GISAXS

Incident on the neutron guide NL5 in the Neutron Guide Hall West

- A neutron guide element in NL5 broken
- Subsequently the vacuum of the whole guide system failed

Two steps of repair:

- replacement of AI window at the main shutter during next reactor shutdown
 → neutrons back except NL5 (MARIA, TREFF, RESEDA) since the next cycle (April 2012)
- the repair of NL5 after inspection, replacement of damaged guide elements

STRESS-SPEC – Residual Stress

J. Keckez et al, Uni Leoben, Austria

Experiment (No. 5771, Feb. 2012) **Aim:** Influence of straightening on residual stress profile in rails

- First time! Longitudinal stress profile through a complete rail
- Maximum path length through steel ~ 70 mm

