ID			Task Name		1st Quarter		3rd Quarter		1st Quarter		rter	1st Quarter		3rd Quarter		1st Quarter		3rd Quarter	
		Milestone		Jan	Apr	Jul	Oct	Jan	Apr	Jul	Oct	Jan	Apr	Jul	Oct	Jan	Apr	Jul	Oct
1	WP20		Advanced Neutron Tools for Soft- and Bio-Materials	$\overline{}$															$\overline{}$
2	Task 20.0		JRA management activity																
3	Task 20.1		A platform for model biological membranes	$\overline{}$								1		1					ightharpoons
4		M 20.1.1	Optimization of model bilayer systems including natural membrane lipids														1		
5		M 20.1.2	Set up a lipid extraction facility to extract and fractionate membranes from real cells							\$ 12/0	7								
6		D 20.1.3	Tests and methodologies to perform NR, GISANS and spin echo measurements on membranes																4
7		D 20.1.4	Protocols for reliable reconstitution of membrane proteins																4
8		D 20.1.5	D lipids extraction. Modeling of biomembranes																4

Report of recent activities on WP20 carried out within the Partnership for Soft Condensed Matter initiative

Giovanna Fragneto, Yuri Gerelli, Irena Kiesel, Robin Delhom, Simon Wulle

ID		Deliverable/ Milestone		1st Guarter Jan Apr	3rd Qu	arter	1st Qua	arter Apr	3rd Qua	rter Oct	1st Quar Jan	rter Apr	3rd Qua	nter Oct	1st Quar Jan	ter Apr	3rd Qua	Oct
1	WP20		Advanced Neutron Tools for Soft- and Bio-Materials															_
2	Task 20.0		JRA management activity															
3	Task 20.1		A platform for model biological membranes	$\overline{}$														$\overline{}$
4		M 20.1.1	Optimization of model bilayer systems including natural membrane lipids													1		
5		M 20.1.2	Set up a lipid extraction facility to extract and fractionate membranes from real cells						\$12/07	•								
6		D 20.1.3	Tests and methodologies to perform NR, GISANS and spin echo measurements on membranes															4
7		D 20.1.4	Protocols for reliable reconstitution of membrane proteins															4
8		D 20.1.5	D lipids extraction. Modeling of biomembranes															4

Two wet chemistry labs; a clean room; laboratories for light scattering, UV & FTIR spectroscopies, rheometry, ellipsometry, BAM, tensiometer, DSC, z-sizer, microscopes, deuterated Lipid Extraction/Characterisation, rheometers, meeting space AVAILABLE TO ALL ILL USERS

ESRF

INSTRUMENTS @ SCIENCE BUILDING

Rheometer Haake Mars II

Rheometer controller

Peltier cooler system (water pump)

Peltier controller

Pc with Rheowin 4 Microscope BX61 @ SB230 (Repaired & upgraded in 2012-2013)

Rheometer @ SB224 (Repaired & upgraded in 2013-2014)

Trough+BAM @ SB230 (Refurbishment planned in 2015)

Phd Simon Wulle

(coll. Charitat, Daillant, Bassereau)

MOTIVATION

- Lipid Membranes are known to exhibit thermal fluctuations
- Close to equilibrium conditions are widely investigated
 - GUV's (Video Microscopy)
 - Floating Bilayer (Neutron / Off-specular synchrotron reflectivity)

- In Living Systems
 - Protein Activity breaks the fluctuation-dissipation theorem
- Out-of-equilibrium fluctuations
- Influence of transmembrane Proteins on membranes interesting for advanced drug development

SAMPLE SYSTEM

Integrating active Proteins into model membrane

- Bacteriorhodopsin
 - Active Proton Pump
 - Light activated -> Activity easy switchable
- Study the changing fluctuation spectrum using Neutron- and Off-specular X-Ray reflectivity

DIRECT DETERGENT MEDIATED INTEGRATION

- Integration and purification of TP's into lipid layers is complex and difficult task
- Recently at Institute Curie developed detergent mediated technique is adapted

- 2. Deploy puryfied membrane Protein
- Because of hydrophobic interactions, Proteins will arrange in Bilayer
- 4. Rinse detergent, Proteins stay in Membrane

- Develop a Sample Cell for Supported Lipid Bilayers
 - Done in cooperation with the PSCM-ESRF Group
- Requirements
 - Build a completly sealed volume with the substrate
 - Inner water volume exchangeble via microfluidic pump
 - Temperature controlled
 - Limited space available under microscope

Problem

- Substrate for optical microscopy very thin (1 mm)
- Can't hold it with a "gripper"
- Solution
 - Development of a vacuum dipper
 - "Sucks" the substrate on via under preassure
 - (Surprisingly) Works effortless even with 7x5 silicon blocks
 - Horizontal and vertival geometry!
 - Easier sample preparation also for neutron experiments
 - Available at PSCM

Four holes deploying

