

The Muon JRA in FP7

Stephen Cottrell, ISIS Facility

JRA presentation General Assembly Rome 2011, November 9

A broad collaboration

Partners:

- University of Parma, Italy
- University of Babes-Bolyai, Romania
- PSI Continuous Muon Facility, Switzerland
- ISIS Pulsed Muon Facility, UK (Coordinator)

Collaborators:

- Dubna, Russia
- University of East Anglia, UK
- RIKEN-RAL, Japan/UK
- University of British Columbia, Canada

Tasks in the JRA

- 1. (Management and dissemination)
- 2. Technologies for high-field instruments
- 3. Developing technologies for μ SR at high pressures
- 4. Novel resonance techniques and simulation codes for complex experiments
- 5. Muon beamline control and modelling

Building on work started during FP6 ...

JRA Tasks

Technologies for High Field Instruments

- Fast-timing detectors for high transverse field applications
- Design and simulation of a high field instrument for PSI
- Performance assessment of high-field operation at ISIS

Fast Timing Detectors for High Field Applications

Experiments in High Fields require detectors that provide:

- Fast timing
- Work in a High Magnetic Field

APD technologies have been investigated to build novel arrays

Prototype detector module (PSI)

Fast Timing Detectors for High Field Applications

Experiments in High Fields require detectors that provide:

- Fast timing
- Work in a High Magnetic Field

APD technologies have been investigated to build novel arrays

Prototype detector module (PSI)

Detector resolution better than 100 ps

Fast Timing Detectors for High Field Applications

Experiments in High Fields require detectors that provide:

- Fast timing
- Work in a High Magnetic Field

APD technologies have been investigated to build novel arrays

Prototype detector module (PSI)

Detector resolution better than 100 ps

Instrument Development – High Transverse Fields at PSI

Challenging requirements: Maximum field 9.5 T Field homogeneity 10 ppm Time resolution better than 140 ps Base temperature:15 mK

The development of new detector technologies and instrument simulation was essential

APD Detector array

Instrument Development – High Magnetic Fields at ISIS

New instrument (HiFi) funded by STFC (UK)

Using technologies developed during FP6

Commissioned and evaluated during FP7

Rev. Sci. Instrum. 82, 073904 (2011)

Fully integrated into the **ISIS User Programme**

Developing technologies for µSR at high pressures

- Development of a solid-sample pressure cell
- Development of gas-phase sample cell with RF coils

Pressure measurements

Develop 50 bar Gas Sample cells:

- for the ISIS High Field spectrometer
- provide capability for RF excitation

Experiment requirements make it tough:

- thin window to admit muons
- RF feed into high pressure cell
- large (3cmx2cm) RF coil

Gas Sample pressure cell and integral RF coil

Novel Resonance Techniques and Simulation codes for Complex Experiments

- RF µSR experiments using NMR style pulsed techniques
- Development of an in-situ NMR spectrometer
- Simulation codes to support μSR experiment analysis

Pulsed RF Techniques – RF Decoupling

Pulsed RF Techniques – Composite Pulse

Composite pulses are often used in magnetic resonance to correct for pulse artefacts (a particular problem with pulsed RF μ SR)

The composite inversion sequence $\pi/2_x \pi_y \pi/2_x$ demonstrates this:

Composite pulse : $\Delta M_z = 100\%$

µSR can look inside the RF pulse!

Impossible with NMR

New Equipment for RF Techniques

Pulsed RF techniques require very large RF powers. To improve reliability we have developed a dedicated RF cryogenic insert

Muon Beamline Control and Modelling

- Development of techniques for beamline diagnostics
- Instrument simulation code to allow full instrument modelling
- Extension of Nexus file format to capture full parameters

Beamline Diagnostics

Muon beamlines are complex and tuning can take many hours. In FP7 we are:

- Investigating methods for providing beamline diagnostics
- Extending final beam spot imaging to work in High Magnetic Fields

Evolution of muon spot with field (HiFi commissioning)

Instrument Modelling

Simulation codes have been developed to model both the *muon beam* and *positron track*

Based on GEANT4, *musrSIM* enables the instrument geometry, materials and fields to be defined

The output can be analysed for various acquisition modes using the *musrSimAna* software

Proved essential for the design of the high field instruments at PSI and ISIS

Simulation of PSI High Field spectrometer

GPD (PSI) modelled and location of muon stops investigated

and Finally ...

Thanks to the many people who have contributed to the work of the JRA

Check out...

http://muons.neutron-eu.net/MuonsHome/

where we are posting project news and results