HOW TO Mantid - R. Leal - September 2014 - (c) ILL

1 Starting

1.1 Cloning the repo

http://www.mantidproject.org/Category:Development

mkdir $HOME/git
cd $SHOME/git

git clone git@github.com:mantidproject/mantid.git
Mantid will be cloned to : $SHOME/git/mantid

1.2 Dependencies
In Ubuntu, use apt-get to install the dependencies:

sudo apt-get install git cmake-gt-gui libboost-all-dev libpoco-
dev libssl-dev libmuparser-dev libgslO-dev libnexusO-dev qgqt4-
default gtd4-gmake gtd4-dev-tools libgwt5-gté4-dev libgwtplot3d-gqté4-
dev liboce-visualization-dev libgscintilla2-dev libgoogle-
perftools-dev python-scipy python-gt4-dev python-sip python-sip-
dev ipython-gtconsole doxygen python-sphinx texlive texlive-latex-
extra dvipng

Download NeXus Library 4.3 and compile it from source:

http://download.nexusformat.org/kKits/

Make sure the configure command will enable hdf4 and hdf5 support. Some extra dependencies, not
mentioned above, might be need (???7?).

1.3 Compiling the source code
Once the code is cloned, run cmake:

cd $HOME/git/mantid

mkdir $HOME/git/mantid/Build

1.3.1 Without Paraview:

cmake -G "Eclipse CDT4 - Unix Makefiles" \

-DCMAKE_ECLIPSE GENERATE_SOURCE_ PROJECT=TRUE
-D_ECLIPSE VERSION=4.3.1 \

http://www.mantidproject.org/Category:Development
http://download.nexusformat.org/kits/
mailto:git@github.com

—DCMAKE_ECLIPSE_MAKE_ARGUMENTS=—j8 —DCMAKE_BUILD_TYPE=Debug \
../Code/Mantid

make -j8

1.3.2 With Paraview

Download Paraview source code from here:

http://download.mantidproject.org/

Install in /opt/Paraview-3.98.1-source .

Then build Paraview :

cd /opt/ParavView-3.98.1-source

sudo mkdir Build

cd Build

Don't know if this is still needed!

export LD LIBRARY PATH=$LD LIBRARY PATH:/opt/ParaView-3.98.1-
source/Build/1lib

sudo cmake \
-DBUILD_TESTING=OFF \
-DBUILD_ SHARED_ LIBS=ON \

sudo make -3j8

Then compile Mantid:

cd $HOME/git/mantid/Build
cmake -G "Eclipse CDT4 - Unix Makefiles" \

-DCMAKE_ECLIPSE_ GENERATE_SOURCE_PROJECT=TRUE
-D_ECLIPSE_VERSION=4.3.1 \

-DCMAKE_ECLIPSE_MAKE ARGUMENTS=-j8 -DCMAKE BUILD TYPE=Debug \

-DMAKE_VATES=TRUE -DParaView DIR=/opt/ParaView-3.98.l-source/Build
\

../Code/Mantid

make -j8

http://download.mantidproject.org/

1.4 Creating Loaders

Example below shows an example to create a loader called LoadPSI

cd ~/git/Mantid/Code/Mantid/Build

./class_maker.py --alg DataHandling LoadPSI

Files created:
. ./Framework/DataHandling/inc/MantidDataHandling/LoadPSI.h
. ./Framework/DataHandling/src/LoadPSI.cpp
. ./Framework/DataHandling/test/LoadPSITest.h

1.5 Creating Algorithms

Example below shows an example to create an algorithm called DetectorEfficiencyCorUser
cd ~/git/Mantid/Code/Mantid/Build

./class maker.py --alg Algorithms DetectorEfficiencyCorUser
Files created:

. ./Framework/Algorithms/inc/MantidAlgorithms/DetectorEfficien
cyCorUser.h

. ./Framework/Algorithms/src/DetectorEfficiencyCorUser.cpp

. ./Framework/Algorithms/test/DetectorEfficiencyCorUserTest.h

2 Loaders

The aim of a Loader is to build a workspace with the data included in the data file and to assign an
instrument definition to the workspace previously created. The instrument is created through an
instrument definition file (IDF). See below.

For the ILL the workspaces are usually of type Workspace2D.

In general, every loader has the method:

int confidence(Kernel: :NexusDescriptor & descriptor) const

It returns a value as high as the confidence of the Loader for a certain instrument. It must not do any
time demanding operations. For the nexus files, for example, it only checks if some paths are or are
not available for a certain instrument.

There is an auxiliary class named LoadHelper with methods useful for the ILL Loaders.

All ILL Loaders start with LoadILL*.

2.1 Instrument Definition

To add a new instrument, the new instrument must be added to the file:

Code/Mantid/instrument/Facilities.xml

Under the XML tag.

<facility name="ILL" (...)>

In addition, a new IDF and an optional parameter file must be created following the convention:
<instrument name> Definition.xml

<instrument name> Parameters.xml

The files must be saved in the folder:

Code/Mantid/instrument/

Instructions to create these files are available here:

http://www.mantidproject.org/InstrumentDefinitionFile
http://www.mantidproject.org/Create an_IDF

As well as an example for a SANS instrument:

http://www.mantidproject.org/IDF-ISIS-SANS2D-annotated

2.2 Workspace creation

The method below creates a workspace2D :

ws = WorkspaceFactory::Instance().create("Workspace2D", nVectors, xLength,
yLenght);

nVectors : number of histograms (number of detectors) + number of monitors.
xLenght : Number of time bins = number of channels + 1

yLenght : Number of channels

2.3 Units

For time of flight (TOF) instruments, in order to use the majority of the algorithms available in
Mantid, the workspace must have TOF as the base unit.

At the ILL, the base units are channel number. Software, such as LAMP, converts the channel

number into Energy. In Mantid, the data must be loaded in TOF, and then, existing algorithms (e.g.

ConvertUnits), can convert from TOF to the desired Units.

The loaders must, therefore, load the data into TOF. First, one must creat the
theoreticalElasticTOF which is the TOF from the source to the detector. Then, the
calculatedDetectorElasticPeakPosition (the channel number where the elastic peak lays)
must be found. Later, the time bins array - tofBins - must be set.

for (size t i = 0; i < numberOfChannels + 1; ++i) {
tofBins[i] = theoreticalElasticTOF + channelWidth
* (1 — calculatedDetectorElasticPeakPosition) - channelWidth / 2;

http://www.mantidproject.org/IDF-ISIS-SANS2D-annotated
http://www.mantidproject.org/Create_an_IDF
http://www.mantidproject.org/InstrumentDefinitionFile

2.4 Properties

A property is a pair key — value. Some properties must exist assigned to the workspace for some
algorithms to run correctly. For instance, the incident energy (E1i) is needed by the
ConvertUnits algorithm. Properties are set in the workspace run object as the following:

API::Run & runDetails = workspace->mutableRun();
runDetails.addProperty<double>("Ei", energyValue, true);

In addition, there is a function (addNexusFieldsToWsRun) that automatically reads all the NeXus
file fields and creates the respective workspace Properties. The function is defined in
theLoadHelper. See, for example, LloadNexusEntriesIntoProperties in
LoadILLReflectometry file for an usage example.

2.5 Moving parts
Some loaders position the detectors according to motor positions (e.g. SANS).

If moving a single positional parameter, the best option would be performing this operation trough a
child algorithm named MoveInstrumentComponent. See moveDetectorDistance in
LoadILLSANS.

LoadHelper class also provides additional methods to get the current position of a component
(getComponentPosition) and to move (moveComponent) or rotate a component
(rotateComponent).

3 Coding

3.1 Git
Git workflow is here:

http://www.mantidproject.org/Git Workflow

See the Setup section for the git mantid macros.

3.2 Build servers

Jenkins build servers are here;

http://builds.mantidproject.org/

After the code was pushed to GitHub, don't forget to keep an eye on the Static analysis tab:
http://builds.mantidproject.org/view/Static%20Analysis/

4 System Tests

When tests execute in more than 2 seconds they must be integrated in the system tests repository
and they can not be part of the mantid framework. For IO tests (Loading & Saving) the threshold is

http://builds.mantidproject.org/view/Static%20Analysis/
http://builds.mantidproject.org/
http://www.mantidproject.org/Git_Workflow

more generous (> 5 seconds). The UnitTests are written in Python and also live in GitHub.

Information can be found online:

http://www.mantidproject.org/System Tests

4.1 Repository

The repository can be cloned as previously explained. The address is the following:

git@github.com:mantidproject/systemtests.git

4.2 Structure

The ILL data files loaded by the Load tests are located in the folder:
Data/ILL/

The code it self responsible or testing algorithms is in
SystemTests/AnalysisTests/*.py
The ILL tests start with the prefix ILL.

To run a test type:

StressTests/ runStressTests.py -R <test file pattern>

You might need to set in advance the MANTIDPATH and the PYTHONHOME for running the
script. Type StressTests/ runStressTests.py -h for more details.

mailto:git@github.com
http://www.mantidproject.org/System_Tests

	HOW TO Mantid – R. Leal – September 2014 – (c) ILL
	1 Starting
	1.1 Cloning the repo
	1.2 Dependencies
	1.3 Compiling the source code
	1.3.1 Without Paraview:
	1.3.2 With Paraview

	1.4 Creating Loaders
	1.5 Creating Algorithms

	2 Loaders
	2.1 Instrument Definition
	2.2 Workspace creation
	2.3 Units
	2.4 Properties
	2.5 Moving parts

	3 Coding
	3.1 Git
	3.2 Build servers

	4 System Tests
	4.1 Repository
	4.2 Structure

